Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 15(6): 1270-1282, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35690651

RESUMO

The efficient induction of type 2 immune responses is central to the control of helminth infections. Previous studies demonstrated that strong Th1 responses driven by intracellular pathogens as well as a bias for type 1 activity in senescent mice impedes the generation of Th2 responses and the control of intestinal nematode infections. Here, we show that the spontaneous differentiation of Th1 cells and their expansion with age restrains type 2 immunity to infection with the small intestinal nematode H. polygyrus much earlier in life than previously anticipated. This includes the more extensive induction of IFN-γ competent, nematode-specific Th2/1 hybrid cells in BALB/c mice older than three months compared to younger animals. In C57BL/6 mice, Th1 cells accumulate more rapidly at steady state, translating to elevated Th2/1 differentiation and poor control of parasite fitness in primary infections experienced at a young age. Blocking of early IFN-γ and IL-12 signals during the first week of nematode infection leads to sharply decreased Th2/1 differentiation and promotes resistance in both mouse lines. Together, these data suggest that IFN-γ competent, type 1 like effector cells spontaneously accumulating in the vertebrate host progressively curtail the effectiveness of anti-nematode type 2 responses with rising host age.


Assuntos
Infecções por Nematoides , Células Th2 , Camundongos , Animais , Camundongos Endogâmicos C57BL , Interferon gama , Células Th1 , Camundongos Endogâmicos BALB C
2.
Front Immunol ; 10: 445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915083

RESUMO

Currently, methods for monitoring changes of gut barrier integrity and the associated immune response via non-invasive means are limited. Therefore, we aimed to develop a novel non-invasive technique to investigate immunological host responses representing gut barrier changes in response to infection. We identified the mucous layer on feces from mice to be mainly composed of exfoliated intestinal epithelial cells. Expression of RELM-ß, a gene prominently expressed in intestinal nematode infections, was used as an indicator of intestinal cellular barrier changes to infection. RELM-ß was detected as early as 6 days post-infection (dpi) in exfoliated epithelial cells. Interestingly, RELM-ß expression also mirrored the quality of the immune response, with higher amounts being detectable in a secondary infection and in high dose nematode infection in laboratory mice. This technique was also applicable to captured worm-infected wild house mice. We have therefore developed a novel non-invasive method reflecting gut barrier changes associated with alterations in cellular responses to a gastrointestinal nematode infection.


Assuntos
Gastroenteropatias/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/patologia , Nematospiroides dubius/isolamento & purificação , Infecções por Strongylida/patologia , Animais , Biomarcadores/análise , Citocinas/análise , Células Epiteliais/fisiologia , Feminino , Gastroenteropatias/parasitologia , Mucosa Intestinal/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Junções Íntimas/fisiologia
3.
Front Immunol ; 9: 2282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349532

RESUMO

Intestinal parasitic nematodes live in intimate contact with the host microbiota. Changes in the microbiome composition during nematode infection affect immune control of the parasites and shifts in the abundance of bacterial groups have been linked to the immunoregulatory potential of nematodes. Here we asked if the small intestinal parasite Heligmosomoides polygyrus produces factors with antimicrobial activity, senses its microbial environment and if the anti-nematode immune and regulatory responses are altered in mice devoid of gut microbes. We found that H. polygyrus excretory/secretory products exhibited antimicrobial activity against gram+/- bacteria. Parasites from germ-free mice displayed alterations in gene expression, comprising factors with putative antimicrobial functions such as chitinase and lysozyme. Infected germ-free mice developed increased small intestinal Th2 responses coinciding with a reduction in local Foxp3+RORγt+ regulatory T cells and decreased parasite fecundity. Our data suggest that nematodes sense their microbial surrounding and have evolved factors that limit the outgrowth of certain microbes. Moreover, the parasites benefit from microbiota-driven immune regulatory circuits, as an increased ratio of intestinal Th2 effector to regulatory T cells coincides with reduced parasite fitness in germ-free mice.


Assuntos
Microbioma Gastrointestinal/imunologia , Enteropatias Parasitárias/imunologia , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/imunologia , Análise por Conglomerados , Genes de Helmintos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Enteropatias Parasitárias/parasitologia , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Camundongos Endogâmicos C57BL , Nematospiroides dubius/genética , Nematospiroides dubius/fisiologia , Organismos Livres de Patógenos Específicos , Infecções por Strongylida/parasitologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Transcriptoma/imunologia
4.
Eur J Immunol ; 48(12): 1958-1964, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30267404

RESUMO

T-helper type 2 (Th2) responses are central to the control of helminth infections, but sensitive to opposing cytokine signals favoring Th1 priming. We previously reported on GATA-3+ T-bet+ Th2/1 hybrid cell differentiation in helminth mono-infections, resulting in a substantial proportion of cells coproducing IFN-γ next to Th2 cytokines. Here, we demonstrate Th2/1 cells as the major source of parasite-specific IFN-γ production in acute and chronic infections with the enteric nematode Heligmosomoides polygyrus. Th2/1 cells differentiated from naive precursors and accumulated in spleen and intestine of infected mice, resulting in increased systemic and mucosal IFN-γ production. IFN-γ supplementation early during infection supported Th2/1 differentiation, associated with elevated parasite fecundity and the maintenance of high worm burdens in the chronic stage of infection, whereas mice lacking IFN-γ signals generated poor Th2/1 responses and restricted parasite fecundity more efficiently. These findings suggest that Th2/1 hybrid responses take part in immune regulation during helminth infection and restrain effective anti-helminth immunity.


Assuntos
Interferon gama/metabolismo , Intestinos/imunologia , Nematospiroides dubius/fisiologia , Baço/imunologia , Infecções por Strongylida/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Interferon gama/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...